SimpleJMX Package

Version 2.2
March 2023

Gray Watson

This manual is licensed by Gray Watson under the Creative Commons Attribution-Share
Alike 3.0 License.

Permission is granted to make and distribute verbatim copies of this manual provided this
license notice and this permission notice are preserved on all copies.

Table of Contents

SITe L 11 . S 1
1 Start Using Quickly 2
2 Using SimpleJMX 3
2.1 Downloading Jar................ i 3

2.2 Naming Objects. ..., 3

2.2.1 @JmxResource Annotation 3

2.2.2 Self Naming Objects ..., 4

2.3 Exposing Fields and Methods 4

2.3.1 @JmxAttributeField Annotation................. 5

2.3.2 @JmxAttributeMethod Annotation 5

2.3.3 @JmxOperation Annotation..................... 6

2.4 Starting a JMX Server.............o i 7

2.5 Register Objects ... 7

2.6 Publishing Using Code Definitions........................ 8

2.7 Using the JMX Clientcoviiiiineiinen. .. 9

2.8 Using With the Spring Framework....................... 10

2.9 Exposing Beans Over HTTP 11

2.10 Using the JVM Platform JMX Server................... 12

2.11 Using With Maven 13

3 Example Code................... ..., 14
4 Open Source License...................... 15

Index of Concepts...........covviieeeon... 16

SimpleJMX 1 5 March 2023

SimpleJMX

Version 2.2 — March 2023

This package provides classes that simplify the publishing of objects using Java’s Man-
agement Extensions (JMX). These published objects can be investigated with jconsole or
another JMX client. Included is also a programmatic JMX client which you can use to
connect to and interrogate remote JMX servers as well as a web/HTTP interface so you
can publish JMX beans to a browser or other web client.

To get started quickly using SimpleJMX, see Chapter 1 [Quick Start], page 2. You
can also take a look at the examples section of the document which has various working
code packages. See Chapter 3 [Examples|, page 14. There is also a HTML version of this
documentation.

Gray Watson http://256stuff.com/gray/

http://256stuff.com/sources/simplejmx/docs/simplejmx.html
http://256stuff.com/sources/simplejmx/docs/simplejmx.html
http://256stuff.com/gray/

Chapter 1: Start Using Quickly 2 5 March 2023

1 Start Using Quickly

To use SimpleJMX you need to do the following steps. For more information, see Chap-
ter 2 [Using], page 3.
1. Download SimpleJMX from the SimpleJMX release page. See Section 2.1 [Download-
ing], page 3.
2. Add @JmxResource annotation to the top of each class you want to publish via JMX.
See Section 2.2 [Naming Objects|, page 3.

@JmxResource(domainName = "your.domain", description = "Runtime counter")|]
public class RuntimeCounter {

3. Add @JmxAttributeField annotation to each of the attribute fields that you want to
expose via reflection over JMX. See Section 2.3 [Expose Items], page 5.

@JmxAttributeField(description = "Start time in millis",
isWritable = true)
private long startTimeMillis;

If you want to annotate the get/set/is attribute methods instead then use
the @JmxAttributeMethod annotation on those methods. See Section 2.3.2
[JmxAttributeMethod Annotation|, page 5.

Q@JmxAttributeMethod(description = "Run time in seconds or milliseconds")f}
public long getRunTime() {

4. Add @JmxOperation annotation to each of operation methods that you want to make
accessable over JMX. See Section 2.3.3 [JmxOperation Annotation], page 6.

@JmxOperation(description = "clear the cache")
public void clearCache() {

5. Start your JMX server. See Section 2.4 [Start Server|, page 7.

// create a new JMX server listening on a port
JmxServer jmxServer = new JmxServer(8000);
jmxServer.start();

6. Register the objects you want to publish via JMX. See Section 2.5 [Register Objects],
page 7.
jmxServer.register (someObject) ;
jmxServer.register (someOtherObject);

For more extensive instructions, see Chapter 2 [Using], page 3.

http://256stuff.com/sources/simplejmx/releases/

Chapter 2: Using SimpleJMX 3 5 March 2023

2 Using SimpleJMX

2.1 Downloading Jar

To get started with SimpleJMX, you will need to download the jar file. The SimpleJMX
release page is the default repository but the jars are also available from the central maven
repository.

The code works with Java 6 or later.

2.2 Naming Objects

When you publish an object you need to tell JMX what the object’s unique name is and
where it should be located in the various folders shown by jconsole. There are a couple of
different ways to do this with SimpleJMX:

2.2.1 @JmxResource Annotation

The @JmxResource annotation is used to define that the resource is to be published via
JMX and how it is to be named.

@JmxResource (domainName = "your.domain", description = "Runtime counter")|]
public class RuntimeCounter {

The above example shows that the RunetimeCounter object is to be published via JMX
inside of the your.domain folder with a text description.

The fields in @JmxResource are:

domainName
Domain name of the object which turns into the top-level folder inside of jcon-
sole. This must be specified unless the object is self-naming. See Section 2.2.2
[Self Naming], page 4.

beanName

Name of the JMX object in the jconsole folder. The default is to use the class
name.

folderNames
Optional array of strings which translate into sub-folders below the domain-
name folder. Default is for the object to show up in the domain-name folder.
The folder names can either be in name=value format in which case they should
be in alphabetic order by name. They can also just be in value format.

Folders are used when you have a large number of JMX objects being published
and you want to group the objects so that you can find them faster than scrolling
through a large list. For example, all of your database objects could go in the
folder "database" while the database connections could go into the sub-folder
"database/connections".

http://256stuff.com/sources/simplejmx/releases/
http://256stuff.com/sources/simplejmx/releases/
http://repo1.maven.org/maven2/com/j256/simplejmx/
http://repo1.maven.org/maven2/com/j256/simplejmx/

Chapter 2: Using SimpleJMX 4 5 March 2023

@JmxResource (domainName = "your.domain",
folderNames = { "database", "connections" })
public class MySqlDatabaseConnection {

description
Textual description of the class for jconsole or other JMX clients. Default is
something like: "Information about class-name".

2.2.2 Self Naming Objects

Instead of using the @JmxResource annotation to define the name/folders for your JMX
object, you can have the object implement the JmxSelfNaming interface. This allows the
object to name itself and will override any settings from the @JmxResource annotation, if
it is specified.

It is particularly necessary to make your object JmxSelfNaming if there are to be multiple
of them published via JMX. For example, if you have multiple database connections that
you want to publish then to ensure that they have a unique name, each of the objects should
be self-naming and should provide a unique name that identifies itself:

// we only use this to set the domain name and the folders
@JmxResource (domainName = "your.domain",
folderNames = { "database", "connections" })
public class DatabaseConnection extends BaseJmxSelfNaming
implements JmxSelfNaming {
@0verride
public String getJmxBeanName() {
// return our toString as our name
return toString();

}

In the above example, we extend the BaseJmxSelfNaming abstract class which has de-
fault implementations for all of the JmxSelfNaming methods, so all we need to do is override
what we want to change.

The methods in the JmxSelfNaming interface are:

String getJmxDomainName () ;
Return the domain name of the object. Return null to use the one from the
@JmxResource annotation instead.

String getJmxBeanName () ;
Return the name of the object. Return null to use the one from the
@JmxResource annotation instead.

JmxFolderName[] getJmxFolderNames();
Return the appropriate array of folder names used to built the associated object
name. Return null for no folders in which case the bean will be at the top of
the hierarchy in jconsole without any sub-folders.

Chapter 2: Using SimpleJMX 5 5 March 2023

2.3 Exposing Fields and Methods

Once we have named our object, we need to tell the JMX server which fields and methods
should be exposed to the outside world. JMX can expose what it calls attributes, operations,
and notifications. At this time, only attributes and operations are supported by SimpleJmx.

Attributes can be primitives or simple types such as String or java.util.Date. With
SimpleJMX you can expose them by using reflection on the object’s fields directly us-
ing the @JmxAttributeField annotation or instead via the get/set/is methods using the
@JmxAttributeMethod annotation.

Operations are methods that do not start with get/set/is but which perform some
function (ex: resetTimer(), clearCache(), etc.). They can be exposed with the
@JmxOperation annotation.

2.3.1 eJmxAttributeField Annotation

SimpleJMX allows you to publish your primitive or simple types by annotating your
fields with the @JmxAttributeField annotation.

@JmxAttributeField(description = "Start time in millis",
isWritable = true)
private long startTimeMillis;

In the above example, the startTimeMillis long field will be visible via JMX. It will
show its value which can be changed because isWriable is set to true. isReadable is set to
true by default. The description is available in jconsole when you hover over the attribute.

The fields in the @JmxAttributeField annotation are:

String description
Description of the attribute for jconsole. Default is something like: "someField
attribute".

boolean isReadible
Set to false if the field should not be read through JMX. Default is true.

boolean isWritable
Set to true if the field can be written by JMX. Default is false.

2.3.2 eJmxAttributeMethod Annotation

Instead of publishing the fields directly, SimpleJMX also allows you to publish your at-
tributes by decorating the get/set/is methods using the @JmxAttributeMethod annotation.
This is only for methods that start with getXxx (), setXxx(...), or isXxx().

The Xxx name should match precisely to line up the get and set JMX features. For
example, if you are getting and setting the fooBar field then it should be getFooBar () and
setFooBar(...). isFooBar() is also allowed if foobar is a boolean or Boolean field.

Notice that although the field-name is fooBar with a lowercase 'f’, the method name
camel-cases it and turns it into getFooBar () with a capital 'F’. In addition, the getXxx ()
method must not return void and must have no arguments. The setXxx (. ..) method must

Chapter 2: Using SimpleJMX 6 5 March 2023

return void and must take a single argument. The isXxx () method is allowed if it returns
boolean or Boolean and the method has no arguments.

Exposing a get method allows you to do some data conversion when the value is pub-
lished. Exposing a set method allows you to do data validation.

@JmxAttributeMethod(description = "Run time in seconds or milliseconds")
public long getRunTime() {

The only field in the @JmxAttributeMethod annotation is the description. The anno-
tation on the get... method shows that it is readable and the annotation on the set. ..
method shows that it is writable.

2.3.3 @JmxOperation Annotation

Operations are methods that do not start with get/set/is but which perform some func-
tion. They can be exposed with the @Jmx0Operation annotation. The method can either
return void or an object. It is recommended that the method return a primitive or a simple
object that is in Jconsole’s classpath already. Otherwise Jconsole will be unable to display
it. It also should not throw an unknown Exception class.

@JmxOperation(description = "clear the cache")
public void clearCache() {

A pattern that is common is to return a String from the method to provide some
feedback to the remote user and to catch and return any exceptions as a String.

@JmxOperation(description = "clear the cache")
public void clearCache() {
try {
// do the cache clearing here
return "Cache cleared";
} catch (Exception e) {
return "Threw exception: " + e;

}
}

The fields in the @JmxOperation annotation are:

String description
Description of the attribute for jconsole. Default is something like
"someMethod operation".

String[] parameterNames
Optional array of strings which gives the name of each of the method param-
eters. The array should be the same length as the parameterDescriptions
array. Default is something like "p0".

@JmxOperation(parameterNames = { "minValue", "maxValue" },
parameterDescriptions = { "low water mark",
"high water mark" })
public void resetMaxMin(int minValue, int maxValue) {

Chapter 2: Using SimpleJMX 7 5 March 2023

String[] parameterDescriptions
Optional array of strings which describes each of the method parameters. The
array should be the same length as the parameterNames array.

OperationAction operationAction
This optional field is used by the JMX system to describe what sort of work is
being done in this operation.

2.4 Starting a JMX Server

The JmxServer class proves a server that jconsole and other JMX clients can connect
to. The easiest way to do this is to choose a port to use, define the server, and then start
it:

// create a new JMX server listening on a port
JmxServer jmxServer = new JmxServer(8000);

// start our server

jmxServer.start();

Instead of starting your own server, you can have the JmxServer make use of the
MBeanServer that was started by the JVM platform. It gets the server from a call to
ManagementFactory.getPlatformMBeanServer ().

// define a server that makes use of the platform MBeanServer
JmxServer jmxServer = new JmxServer(true);

Before your program exits, it is best to stop the server, so the following try/finally block
is a good pattern to use:

// create a new JMX server listening on a port
JmxServer jmxServer = new JmxServer(8000);
try {

// start our server

jmxServer.start();

// register objects with the server and do other stuff here

} finally {
// un-register objects
// stop our server
jmxServer.stop();

2.5 Register Objects

To published objects via the server via JMX you must register them with the JmxServer:
jmxServer.register(someObject);

There also is an unregister(...) method which will un-publish from the server:

Chapter 2: Using SimpleJMX 8 5 March 2023

jmxServer.unregister (someObject) ;

The objects that are registered must be named and the fields and methods that are to
be exposed must be specified.

The register(...) and unregister(...) methods allow you to publish JMX infor-
mation about dynamic objects that get created and destroyed at runtime. For example, if
you want to see details about an attached client connection, you could do something like
the following:

// accept a connection
Socket socket = serverSocet.accept();
ClientHandler handler = null;
try {
// create our handler
handler = new ClientHandler (socket);
// register it via jmx
jmxServer.register (handler);
// handle the connection
handler.handle();
} finally {
socket.close();
if (handler !'= null) {
// unregister it from JMX
jmxServer.unregister (handler) ;

3

2.6 Publishing Using Code Definitions

Sometimes, you want to expose a class using JMX but you don’t control the source code
or maybe you don’t want to put the SimpleJMX annotations everywhere. If this is the case
then you also have the option to expose just about any object programmatically.

The JmxServer has a register function which takes just an Object, an ObjectName which
can be generated with the use of the ObjectNameUtil class, and an array of attribute-fields,
attribute-methods, and operations.

The object-name can also be defined using the JmxResourceInfo object that defines the
fields in the @JmxResource programmatically

JmxResourceInfo resourcelnfo =
new JmxResourceInfo("your.domain", "beanName",
new String[] { "database", "connections" },
"your resource desription"),

The attribute-fields are specified as an array of JmxAttributeFieldInfo objects that
are associated with fields that are exposed through reflection:

JmxAttributeFieldInfo[] attributeFieldInfos =
new JmxAttributeFieldInfol[] {
new JmxAttributeFieldInfo("startMillis", true /* readable */,

Chapter 2: Using SimpleJMX 9 5 March 2023

false /* not writable */, "When our timer started"),
+;

The attribute-methods are specified as an array of JmxAttributeMethodInfo objects
that are associated with fields that are exposed through get/set/is methods:

JmxAttributeMethodInfo[] attributeMethodInfos =
new JmxAttributeMethodInfol[] {
new JmxAttributeMethodInfo("getRunTime",
"Run time in seconds or milliseconds"),
};
The operations are specified as an array of JmxOperationInfo objects that are associated
with operation methods:
JmxOperationInfo[] operationInfos =
new JmxOperationInfol[] {
new JmxOperationInfo("restartTimer", null /* no params */,
null /* no params */, OperationAction.UNKNOWN,
"Restart the timer"),
};

To register the object you would then do:

jmxServer.register(someObject,
ObjectNameUtil.makeObjectName ("your.domain", "SomeObject"),
attributeFieldInfos, attributeMethodInfos, operationInfos);

For more information, take a look at the random-object example program. See [random
object example], page 14.

You can also use the PublishAllBeanWrapper which exposes all public fields and meth-
ods as attributes or operations. All public fields will be exposed as an attribute and if
not-final will be exposed as writable. All public methods that start with is or get will
be exposed as attributes and if they have a set method will be writable. All other public
methods will be exposed as operations.

Take a look at the publish-all example program to see working code that uses this class.
See [publish all example], page 14.

2.7 Using the JMX Client

SimpleJMX also includes a programmatic, simple JMX client which you can use to
interrogate JMX servers. You connect to the server by specifying the host and port.

JmxClient client = new JmxClient("serveril", 8000);
To get a list of the available beans use the
Set<ObjectName> beanNames = jmxClient.getBeanNames();
Then you can get the attributes and operations associated with an 0bjectName:

MBeanAttributeInfo[] attributelnfos =
jmxClient.getAttributesInfo(objectName) ;

MBeanOperationInfo[] operationInfos =
jmxClient.getOperationsInfo(objectName) ;

You can then get an attribute from the info or invoke an operation:

Chapter 2: Using SimpleJMX 10 5 March 2023

boolean showSeconds =
jmxClient.getAttribute(objectName, attributelnfo.getName());
client.invokeOperation(objectName, operationInfo.getName());

You can also get attributes by strings instead of 0bjectNames:

boolean showSeconds =
jmxClient.getAttribute("your.domain", "RuntimeCounter",
"showSeconds") ;

If you need to construct the object name directly then you can use ObjectName static
methods. This is particularly useful if you use Jconsole to find a bean that you want to
operate on via the JmxClient. Just copy the ObjectName field associaed to a bean from
Jconsole and then do something like the following:

int availableProcessors =
client.getAttribute(
ObjectName.getInstance("java.lang:type=OperatingSystem"),
"AvailableProcessors");
You can also call operations with string arguments:
client.invokeOperation(ObjectName.getInstance("java.lang:type=Memory"),
"gc");
See the JmxClient javadocs for more information

2.8 Using With the Spring Framework

SimpleJMX has an optional dependency on the Spring Framework jar(s). This means
that if you have the Spring framework included in your project, you can make use of the
BeanPublisher class which will automagically register the beans from your spring XML
configuration files to the JmxServer class. The BeanPublisher class will register classes
that have the @JmxResource annotation, that implement the JmxSelfNaming interface, that
are of type that are of type JnxBean, and are of type PublishAl1BeanWrapper.

Here’s a sample bean configuration:

<!-- registers @JmxResource and JmxSelfNaming classes with the server -->

<bean id="beanPublisher" class="com.j256.simplejmx.spring.BeanPublisher">}}
<property name="jmxServer" ref="jmxServer" />

</bean>

<!-- our JMX server which publishes our JMX beans -->
<bean id="jmxServer" class="com.j256.simplejmx.server.JmxServer"
init-method="start" destroy-method="stop">
<property name="registryPort" value="8000" />
</bean>
Notice that the JmxServer is configured with an init-method and destroy-method
which cause the JMX server to be started and stopped when the application context is
loaded and closed.
You can also wire a JMX bean for another bean that is not using the @JmxResource an-
notation and does not implement the JmxSelfNaming interface with the help of the JmxBean
class:

Chapter 2: Using SimpleJMX 11 5 March 2023

<!-- some random bean defined in your spring files -->
<bean id="someBean" class="your.domain.SomeBean">

</bean>
<!-- publish information about that bean via JMX -->
<bean id="jmxServerJmx" class="com.j256.simplejmx.spring.JmxBean">
<!-- helps build the ObjectName -->
<property name="jmxResourceInfo">
<bean class="com.j256.simplejmx.common.JmxResourceInfo">
<property name="jmxDomainName" value="your.domain" />
<property name="jmxBeanName" value="SomeBean" />
</bean>
</property>
<!-- defines the fields that are exposed for JMX -->
<property name="attributeFieldInfos">
<array>

<bean class="com.j256.simplejmx.common.JmxAttributeFieldInfo">
<property name="name" value="someCounter" />

</bean>
</array>
</property>
<!-- defines the get/is/set methods exposed -->
<property name="attributeMethodInfos">
<array>

<bean class="com.j256.simplejmx.common.JmxAttributeMethodInfo">
<property name="methodName" value="getSomeValue" />

</bean>
</array>
</property>
<!-- defines the operations (i.e. non get/is/set) methods exposed -->
<property name="operationInfos">
<array>

<bean class="com.j256.simplejmx.common.Jmx0OperationInfo">
<property name="methodName" value="someMethod" />
</bean>
</array>
</property>
<property name="target" ref="jmxServer" />
</bean>

Take a look at the spring example program to see working code that uses this class. See
[spring framework example], page 14.

Chapter 2: Using SimpleJMX 12 5 March 2023

2.9 Exposing Beans Over HTTP

SimpleJMX contains a simple web-server implementation that uses Jetty so that you can
access JMX information from a web browser or other web client using the JmxWebServer
class. To use this class you need to provide a Jetty version in your dependency list or
classpath.

// first start the jmx server

JmxServer jmxServer = new JmxServer (JMX_PORT);
jmxServer.start();

// register your beans as normal
jmxServer.register (counter) ;

// create a web server listening on a specific port
JmxWebServer jmxWebServer = new JmxWebServer (WEB_PORT) ;
jmxWebServer.start() ;
We recommend that you run the JMX server even if you are planning to use the web
server most of the time. You still register beans via the JmxServer and any beans added
to the platform MBeanServer will be visible via your browser.

Take a look at the web-server example program to see working code that uses this class.
See [web server example], page 14.

2.10 Using the JVM Platform JMX Server

SimpleJMX allows you to start your own JMX server on a particular port. One of the
benefits of using the JmxServer server instead of the JVM platform server is that you can
specify both the registry and server ports. This allows you to better control what ports
need to be exposed through a firewall.

Sometimes, however, you will instead want to use the JMX MBeanServer that is built
into JVM platform and that is enabled by command line parameters to the java command.
To enable JMX on the command-line you need to use the following system properties:

com.sun.management . jmxremote — turns on JMX

com.sun.management . jmxremote.port — sets the registry port

com.sun.management . jmxremote.authenticate — enables or disables authentication
com.sun.management. jmxremote.ssl — enables or disables SSL connections

For example:

java -Dcom.sun.management.jmxremote \
-Dcom. sun.management . jmxremote.port=9999 \
-Dcom.sun.management . jmxremote.authenticate=false \
-Dcom.sun.management . jmxremote.ssl=false \
-jar yourApplication.jar
WARNING: You should disable authentication and SSL only if necessary. If you are
trying to use JMX over an insecure network then this will create a security hole.

JMX is actually a two connection protocol. Your JMX client connects first to the
RMI registry port which returns what IP/port to call to connect to the application for

Chapter 2: Using SimpleJMX 13 5 March 2023

JMX. Depending on the complexity of your network configuration, it may be that the JVM
attaches the JMX server to an IP that is not one that the client can contact. In this case,
you may need to use the java.rmi.server.hostname property to define what name/IP the
RMI registry should report back.

java -Dcom.sun.management.jmxremote \
-Dcom. sun.management . jmxremote.port=9999 \

-Djava.rmi.server.hostname=10.1.2.3 \

To run the JmxServer but still use the MBeanServer that was started by the JVM
platform, you use the boolean constructor and pass true to it:
// define a server that makes use of the platform MBeanServer
JmxServer jmxServer = new JmxServer(true);

There is also a jmxServer.setUsePlatformMBeanServer (true) method to use with
Spring injection.

2.11 Using With Maven

To use SimpleJMX with maven, include the following dependency in your ‘pom.xml’ file:

<dependency>
<groupIld>com.j256.simplejmx</groupld>
<artifactId>simplejmx</artifactId>
<version>2.2</version>

</dependency>

Chapter 3: Example Code 14 5 March 2023

3 Example Code

Here is some example code to help you get going with SimpleJMX. I often find that
code is the best documentation of how to get something working. Please feel free to suggest
additional example packages for inclusion here. Source code submissions are welcome as
long as you don’t get piqued if we don’t chose your’s.

Simple, basic
This is a simple application which publishes a single object. See the source
code on github.

Random object example
This is an example showing how to programmatically expose using JMX a
random object without SimpleJMX annotations: See the source code on github.

Spring Framework example
This is an example showing how you can use SimpleJMX with the Spring Frame-
work. See the source code on github. The example spring config file is also
available.

Jmx Web Server example
This is an example showing how you can use SimpleJMX to expose JMX beans
over HT'TP to web browsers. See the source code on github.

Publish all example
This is an example that shows how you can use the PublishAllBeanWrapper
to publish information about a random object. See the source code on github.

http://256stuff.com/sources/simplejmx/docs/example-simple
http://256stuff.com/sources/simplejmx/docs/example-simple
http://256stuff.com/sources/simplejmx/docs/example-random
http://256stuff.com/sources/simplejmx/docs/example-spring
http://256stuff.com/sources/simplejmx/docs/example-spring-config
http://256stuff.com/sources/simplejmx/docs/example-web
http://256stuff.com/sources/simplejmx/docs/example-publish-all

Chapter 4: Open Source License 15 5 March 2023

4 Open Source License

This document is part of the SimpleJMX project.
Copyright 2023, Gray Watson

Permission to use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted, provided that this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR, CONSEQUEN-
TIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The author may be contacted via the SimpleJMX home page.

http://256stuff.com/sources/simplejmx/

Index of Concepts

Index of Concepts

Q@

@JmxAttributeField annotation................ 5
@JmxAttributeMethod annotation 5
@JmxOperation annotation.................... 6
@JmxResource annotation..................... 3
all publicinfo 9
attributes ... 5
authentication..............., 12
author 1
client, JIMX 9
code examples............... il 14
D

deregister objects 7
description of object 4
directories in jconsole 3
downloading the jars.......................... 3
dynamic objects......... o oL 4,8
E

examples of code o 14
exposing fields............ 5
exposing get/set/is methods................... 5
exposing methods..................... 6
F

firewall........... 12
folders in jeonsole................... 3
get methods.......... 5
getting started.......... 2
H

how to download the jars...................... 3
how to get started 2
howtouse.......... ... o i 3
HTTP ..o 12

16

5 March 2023

I

introduction........... 1
ismethods 5
jeomsole....... ... 1, 10
jeonsole folders 3
jmxclient........... . o 9
JMX viaweb.........oo 12
JmxAttributeField annotation 5
JmxAttributeMethod annotation............... 5
JmxBean.......... 10
JmxOperation annotation 6
JmxResource annotation 3
JmxServer. ... 7
JVM JMX serverc.ooiiiiiin.. 12
L

licensecooveini 15
M

ManagementFactory 7,13
Maven, use with.............. 13
MBeanServeriiiiiii 7,13
methods, publishing........................... 6
multiple objects 4
N

naming objects 3
NAT . 12
notifications, not supported.................... 5
object description............. 4
object domain name 3
object name.......... 3
objects with same name....................... 4
open source license., 15
Operations.vuue 6
P

platform JMX server......................... 12
platform MBeanServer..................... 7,13
pom.xml dependency......................... 13
port number. 12
programmatic publishing 8
public fields, methods 9
publish all example 14

Index of Concepts

publish all public............... 9
publish objects 7
publish transient objects 8
publish via http 12
PublishAllBeanWrapper 9, 10
publishing fields 5
publishing get/set/is methods.................. 5
publishing methods 6
Q

quick start ... 2

R

read-only attributes.......... 0L 5
register objects 7
register transient objects 8
remove objects 7

S

self naming objects 4
set methods 5

5 March 2023

simple example oL 14
simple Jmxo 1
Spring framework, 10
SSL connections 12
start a JMX server............ 7
system properties............. 12

T

transient objects.......... o oL 8

U

unpublish objects................ 7
using platform MBeanServer 7,13
using SimpleJMX 3
using with Spring............................ 10

A%

WED SEIrVer 12
web server example 14
where to get new jars 3
writable attributes.............. 5

	SimpleJMX
	Start Using Quickly
	Using SimpleJMX
	Downloading Jar
	Naming Objects
	@JmxResource Annotation
	Self Naming Objects

	Exposing Fields and Methods
	@JmxAttributeField Annotation
	@JmxAttributeMethod Annotation
	@JmxOperation Annotation

	Starting a JMX Server
	Register Objects
	Publishing Using Code Definitions
	Using the JMX Client
	Using With the Spring Framework
	Exposing Beans Over HTTP
	Using the JVM Platform JMX Server
	Using With Maven

	Example Code
	Open Source License
	Index of Concepts

